The Mechanical Behavior of HAVAR Foils Using the Small Punch Technique

نویسندگان

  • Shlomo Haroush
  • Daniel Moreno
  • Ido Silverman
  • Asher Turgeman
  • Roni Shneck
  • Yaniv Gelbstein
چکیده

Prediction of the mechanical behavior of thin foils (~25 µm) requires special characterization techniques. The current work is focused on the mechanical and microstructural characterization of 25 µm HAVAR alloy foils following annealing, cold rolling, and subsequent heat treatments, using small punch testing (SPT), X-ray diffraction (XRD), and transmission-scanning electron microscopy (TEM). The SPT technique revealed that the annealed specimens exhibited the largest maximal load to failure and deformation (more than two-fold), compared to the cold rolled and heat treated conditions. The microscopy observations revealed high dislocation density following cold rolling and subsequent heat treatments. Following annealing, a cubic crystallographic structure (FCC) with equiaxed grains and a limited dislocation population was observed. Following cold rolling and subsequent thermal treatment, a preferred orientation texture (i.e., 'deformation texture') was observed with a very high dislocation density. The correlation between the mechanical behavior and the microstructural observations is discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHEET ELECTROMAGNETIC FORMING USING CONVEX PUNCH INSTEAD OF CONVAVE DIE

High speed and absence of a precise control over pressure distribution confine sheet Electromagnetic Forming into a die to simple shapes having shallow depth. It is possible to reach a higher depth by using a convex punch instead of a concave die. In this study, sheet Electromagnetic Forming on a punch and sheet Electromagnetic Forming into a die are investigated. The electromagnetic part of th...

متن کامل

Characterization of PEEK biomaterials using the small punch test.

The small punch test is widely used to characterize the ductility and fracture resistance in metals and ceramics, when only a small volume of material is available. This study was conducted to investigate the suitability of the small punch test for characterizing polyetheretherketone (PEEK) polymeric biomaterials for changes in material grade, crystallinity, and molding process. The small punch...

متن کامل

The Study of Deep Drawing of Brass-steel Laminated Sheet Composite Using Taguchi Method

Deep drawing process is one of the most applicable methods in producing industrial parts. In this process, the initial blank deforms to final product using a rigid punch and die. In this investigation, the effect of deep drawing process parameters of brass/steel laminated sheet composites on required forming force has been investigated. The process simulated using finite element method (FEM) an...

متن کامل

The Effect of Ridges to Improve Ductility and Reduce Deformation Energy in Deep-Drawing Process

In this research, two new methods that improve the drawing depth of deep-drawing processes have been introduced. In the first technique, by creating ridges on the punch surface, the stress concentration is decreased on the blank near the punch edge, in turn increasing the drawing depth. The second method is based on the principle of reducing resistant force in the flange area between the die, t...

متن کامل

0509 - a Small Punch Test Technique for Characterizing Pmma Used in Total Joint Replacement

Introduction. Failure of the bone cement in a total joint replacement can lead to implant loosening and ultimately necessitate device revision. Establishing and maintaining the integrity of the polymethylmethacrylate (PMMA) bone cement is thus important to the long-term performance of cemented joint replacements. In particular, the fracture toughness or work to failure of the cement may play an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017